
AD AOOS 516 VIRGINIA POLYTECHNIC INST AND STATE UNIV WASHINGTON -- ETC F16 9/2
DIALOG-A SIMIA.A CLASS FOR WRITING INTERACTIVE PROGRAMS. EU)
OCT TO R J3 ORSASS, R E PORTER AFOSR-70-0021

UNCLASSIFIED VPI/SU-TM-79-SA AFOS-R-h00"6 IL

IND

801

, 3O0.0 4 4 6 EXTENSION DIVISION

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE P.BSox 196
GRADUATE PROGRAM IN NORTHERN VIRGINIA Washgt, D C. 20041703)o,, ,,..W

SDIALOG -. LF $C 4

A.SIMULA* CLASS FOR WRITING INTERACTIVE PROGRAMS

S "-, "," Richard J./Orgass

L Robert E./Porter

Technical Xemordum No. 79-3a 14 1
October;14, 1979

V roABSTRACT/
X "I4ULA class containing procedures for easily writing

< programs that interact with a user by asking questions at run
time and which dynamically name and open files at run time is
described. The class uses properties of IBM SIMULA that are
not available in other implementations. It also depends on
the EBCDIC character codes rather than ASCII but it is assumed
that a user's terminal is an ASCII terminal.

This revised report describes a number of extensions of
DIALOG. While most programs using the old version will work
correctly with the new version, there are many enhancements
and users are advised to reread all Sections 3 to 9.

Keywords and Phrases: SIMULA, interactive programming

CR Categories: 4.22, 4.49, 4.39

* SIMULA is a registered trademark of the Norwegion Computing
Center, Oslo, Norway.

ptl t Research sponsored by the Air Force Office of Scientific Research,
Air Force Systems Command, under Grant No. AFOSR-70-0021. The

Q. United States Government is authorized to reproduce and distrib-
0 ute reprints for Govermental purposes notwithstanding any copy-

right notation hereon.
I The information in this document is subject to change without
notice. The author, Virginia Polytechnic Institute and State
University, the Commonwealth of Virginia and the United States
Government assume no responsibility for errors that may be
present in this document or in the program described here.

80 rovedpfobgi

Locoal a Dud Wnoal Airport- i u unll

(

Copyright, 1979

by

Richard J. Orgass

and

Robert E. Porter

General permission to republish, but not for profit, all or part
of this report is granted, provided that the copyright notice is
given and that reference is made to the publication (Technical
Memorandum No. 79-3a, Department of Computer Science, Graduate
Program in Northern Virginia, Virginia Polytechnic Institute and
State University), to its date of issue and to the fact that re-
printing privileges were granted by the author.

AIR 7O

NOT(AlSO)
Th :, *

*.-. J-.2 (7b).

A. D. . O i
fechnicl i, , Off oer

* ,.. ~ tI

PAGE READ INsTRucTIONSREPORT DOCUMENTATION PAGEREDISUCON
BEFORE COMPLETINr FORMI

1. REPORT NUMBER 2 GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBERAFC2-TR- 80-0446 4 N O

4. TITLE (and Subtle) 5 TYPE OF REPORT & PERIOD COVERED

DIALOG - A SIMULA CLASS FOR WRITING INTERACTIVE Interim

PROGRA.MS 6. PERFORMING 013. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER")

Richard J. Orgass

Robert E. Porter AFOSR 79-0021

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Virginia Polytechnic Inst. & State University AREA & WORK UNIT NUM8ERS

Department of Computer Science

Washington, DC 20041 61102F 2304/A2

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Office of Scientific Research/NM October 1979
Bolling AFB, Washington, DC 20332 13. NUMBER OF PAGES

26
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
1Sa. DECLASSIFICATION DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

I?. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and Identify by block number)

SIMULA, interactive programming

20. ABSTRACT (Continue on reverse side If necessary end Identify by block number)

"--" A SIMULA class containing procedures for easily writing programs that interact
with a user by asking questions at run time and which dynamically name and open
files at run time is described. The class uses properties of IBM SIMULA that
are not available in other implementations. It also depends on the EBCDIC

character codes rather than ASCII but it is assumed that a user's terminal is
an ASCII terminal.

This revised report describes a number of extensions of DIALOG. While most\

DD J 1473 EDITION OF 1 NOV6 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whe.n Date Entermi)

s Ink

20. Abstract cont.
.4
programs using the old version will work correctly with the new version, there
are many enhancements and users are advised to reread all Sections 3 to 9.

UNCLASSIFIED
SECURITY CLASSIFICATION OF T-11 PAGI(Phe.n Date Enterod)

1. Problem Statement

A continuing problem in the design of genuinely interactive
programs is that it is quite painful to write code for reliably
and meaningfully interacting with the user sitting at his termi-
nal. This is true in all time sharing systems and is a particu-
larly severe problem in the CMS system because the terminal
interface provided by the operating system is quite crude.

The minimal sequence of events that must occur when a user is
asked to provide input may be described as follows:

(1) Prompt the user with a question.

(2) Read the answer.

(3) Check the answer to make sure that it is an
acceptable answer.

(4) If the answer is unacceptable, provide a
corrective message and ask the question
again.

There are two other properties of a question asking program
that are particularly helpful. First, it is a good idea to pro-
vide a mechanism for a user to request an explanation of the
question. If the user doesn't understand the question, he should
be able to type "help" or "?" to request an explanation of the
question in place of an answer. Second, it should be possible to
provide a default answer that is the most typicai answer. A user
should be able to select this answer simply by hitting the
"return" key.

Many programs perform useful work by processing files and
writing other files. A very useful way of identifying these
files is to read the file specification at run time. One would
like to be able to prompt for a file name and then open the file
to read or write and then request additional file names. This
is, at best, difficult in CMS.

When processing text input, it is often useful to have a col-
lection of procedures for testing strings to find out if they
have specific properties or to extract substrings. A few simple
procedures provide the capabilities that are needed in many
applications but more elaborate applications are best served by
using an implementation of the SNOBOL scanner. (A SIMULA coded
coroutine implementation of the SNOBOL scanner is available from
the first named author.]

This memorandum describes a SIMULA class that contains proce-
dures for performing these operations. A SIMULA coded implemen-
tation of a coroutine SNOBOL scanner is available for applica-
tions that require extensive text processing capabilities.

Section 2 describes procedures for asking questions at a ter-
minal and for examining a user's response and Sections 3, 4, 5
and 6 contain a description of file management procedures. Some
useful utility procedures are described in Section 7 and Section
8 gives detailed information about gaining access to these proce-
dures and incorporating them into SI:ULA programs. There is a
discussion of terminal attributes in Section 9 and the appendix
contains an example of the use of DIALOG.

The terminal transcripts exhibited in this memorandum adhere
to the following conventions. A running program prompts with an
asterisk (*) when there is no other prompt and CMS at monitor
level prompts with a period (.). All of the special characters
(CHARDEL, LINEDEL, etc.) are nonprintable ASCII characters.

2. Query Procedures

All of the procedures described here have the following pro-
perties. When the procedure is called the parameters include the
question to be asked, a default answer, and a procedure to print
a further explanation of the question is printed on the terminal
and the user's response is the return value. If the user
responds with a carriage return, the return value is the default
value and if the user responds with a question mark (?) the
procedure to explain the question is invoked and then the ques-
tion is asked again.

For example, suppose a program wishes to read an input file
name from the terminal into a text variable file spec. This can
be accomplished by executing the following statement:

file_spec :- text_request("Input file:", NOTEXT, TRUE);

The first parameter is the question that is to be printed on the
terminal. The second parameter is the default answer and since
this parameter is NOTEXT, there is no default answer. The third
parameter is the constant TRUE to indicate that no help is avail-
able. When this statement is executed, the terminal transcript
will look like this:

Input file:?
No help available.
Input file:
? Default value may not be selected. Please try again.
Input file:letter simula

-2-

.. zy

After this, the return value of textrequest is the text "letter
simula". In the first response, the user asked for an explana-
tion of the query by responding with a "?". Since the call to
text request did not include a help procedure, the appropriate
message was printed. Next, the second response was an empty line
indicating that the default value was desired. Since no default
value was specified in the procedure call, a corrective response
was printed and then the question was asked again. Finally, the
third response was a character string and this string became the
return value of the procedure.

As a second example, suppose that the statement:

f :- text_request("Output file:", "letter data, TRUE);

is executed. In this case the terminal transcript would look
like this:

Output file:/letter data/: ?
No help available.
Output file:/letter data/:

If the second response was simply a carriage return, then the
return value of textrequest would be the string "letter data".
On the other hand, if the response were some character string,
then this string would be the return value.

Suppose it is desirable to provide a help message in response
to the input "?". This might be accomplished by writing the fol-
lowing procedure:

BOOLEAN PROCEDURE help;
BEGIN

Outimage;
Outtext("This file will contain ");
Outtext("a list of addresses");
Outimage;
Outtext("after the program is executed.");
Outimage

END of help;

The call

f :- textrequest("Output file:", "letter data", help), 4'.

might generate the following transcript:

Output file:/letter data/: ? i C
This file will contain a list of addresses e
after the program is executed. . ,
Output file:/letter, data/: mylib address -'-" , '4'r

-3

-3-

After this transcript, the return value of textrequest is the

string "mylib address".

The heading of the declaration of textrequest is:

TEXT PROCEDURE text request(prompt, default, nohelp);
NAME prompt, default, no_help;
TEXT prompt, default;
BOOLEAN, nohelp;

The formal parameter prompt is the question to be printed on the
terminal. The parameter default is the value to be returned if
the user's response is a carriage return. The parameter no_help
is to be TRUE if there is no help available for this query. If
there is help available, it is printed by a boolean procedure
that returns the value FALSE.

The procedure boolean_request is used to ask yes or no ques-
tions in very much the same way. The heading of its declaration
is

BOOLEAN PROCEDURE booleanrequest(prompt, default,
nohelp);

NAME prompt, nohelp;
VALUE default;
TEXT prompt;
BOOLEAN default, nohelp;

The parameter prompt is the question that is to be printed on the
terminal and the parameter default (which must be TRUE or FALSE)
is the return value if the user responds by entering "return".
If the user enter responds with a "?" and if nohelp is TRUE then
the message "No help available." is printed. On the other hand,
if nohelp is a boolean procedure that returns FALSE and prints
an explanation, this text is printed instead of "No help availa-
ble."

For example, if the procedure help6 is declared as:

BOOLEAN PROCEDURE help6;
BEGIN

Outtext("If tabs may be used at indentation ");
Outtext("answer ""yes"",');
Outimage;
Outtext("otherwise answer ""no"".");
Outimage

End of help6;

Then the execution of the statement

tabs :a booleanrequest("Tabs in indentation:", FALSE,
help6);

-4-

might result in the following transcript:

Tabs in indentation:/n/: ?
If tabs may be used at indentation answer "yes",
otherwise answer "no".
Tabs in indentation:/n/: why
Please answer y or n.
Tabs in indentation:/n/: y

After this transcript, the return value of boolean_request is
TRUE. If the last response was an empty line or "n", then the
return value would be false.

Note that the responses "y", "yes", "Y", "YEs" are all equiva-
lent as are "n", "no", "N", "nO". More precisely, lower case
letters are translated into upper case letters before the
response is examined.

The procedure integer_request is used to prompt for an integer
response and to check if the response is an integer. Further, if
the response is an integer, it is checked for being in an accept-
able range. The heading of this procedure is:

INTEGER PROCEDURE integerrequest(prompt, default, min,
max, nohelp);

NAME prompt, nohelp;,
VALUE default, min, max;
TEXT prompt;
INTEGER default, max, min;
BOOLEAN nohelp;

The formal parameter prompt is the question to be printed on the
terminal and the formal parameter default is the value that is
returned if the user responds with a "return". After an integer
is read from the terminal, it is checked to confirm that it is
between min and max. If it fails this test, the user is asked
for a correct answer. (The default value is also checked against
the range if the user responds with "return"; this helps catch
programming errors.) The formal parameter no help is used to
deal with the user response "?" as described above.

If any integer is an acceptable response, the SIMULA defined
constant Maxint may be used in a call. For example, if the
default answer to the prompt "Enter any integer:" is 0, one would
execute the statement:

result :- integer request("Enter any integer:", 0,
-Maxint, Maxint, TRUE);

As a more detailed example, consider the execution of the
statement

result := integerrequest("reserved words:", 1,
0, 3, TRUE);

The terminal transcript might look like this:

Reserved words:/O/: ?
No help available.
Reserved words:/O/: bye
The input was not an integer. Please try again.
Reserved words:/O/: 12
The input integer was out of the acceptable range [0,3].
Please try again.
Reserved words:/O/: 2

After this sequence of events, the return value of
integer_request is 2.

These three procedures provide most of the terminal prompting
activities that are needed. While it might be desirable to
prompt for floating point numbers, the authors have not felt the
need and, therefore, did not include it in this program.

An excerpt from a program that uses these procedures as well
as a sample terminal transcript from the execution of the program
appears in the Appendix.

3. Input File Management

Connecting files to a running program in CMS is, at best, a
rather tedious process. CMS requires a substantial amount of
information before the file can be opened and read. Three proce-
dures that make it easier to read files are described in this
section.

In SIMULA, a new Infile is created by executing the statement

f :- NEW Infile("DDN");

The parameter of Infile must be a text object whose value is the
DD name of an input file. That is, before this statement is exe-
cuted, a CMS filedef command such as

FILEDEF DDN DISK MUMBLE FOO

must be executed. If this command has not been executed, then a
SIMULA run time system fatal error will occur. In addition, #he
filedef command must be executed before the program begins execu-
tion so it is impossible to read a file name during program exe-
cution.

After creating an Infile, it is necessary to open the file by
executing a statement such as:

f.Open(Blanks(lrecl));

-6-

The value of the variable irecl must be at least the record
length of the input file. If the value of lrecl is less than the
record length of the file, a SIMULA run time system fatal error
will occur.

One would much prefer to be able to open a file by simply giv-
ing the CMS file specification at run time and leaving other
details to the operating system or other programs. The proce-
dures getinfile, get dd input and getinputfile make it possi-
ble to read files when only the CMS file specification is known.
Moreover, the file names can be read during program execution.

The heading of the declaration of procedure get infile is:

REF(Infile) PROCEDURE getinfile(t); NAME t; TEXT t;

The value of the parameter t must be a CMS file specification of
the form <fn>[<ft>(<fm>]]. At least one space or a period must
separate the three components of the file specification. If the
<ft> is omitted, DATA is assumed as this component of the file
specification. If <fm> is omitted, A is assumed. In addition,
if there is no file with the given <fn> <ft> on the A disk all
other disks are searched for files with this name and type. The
first file in the (user defined) search order that has this <fn>
<ft> is selected.

It is possible to omit the <ft> and select the default <ft>
while specifying the <fin>. The string FOO..B refers to file FOO
DATA B.

The return value of get infile is an open Infile which is
connected to the file named iii the value of t. A filedef (using
a standard DD name of the form SIMnnn) is issued during the call
to get infile and then the file is opened. The length of the
Image attribute of this Infile is the record length of the file.

As an example, consider the following sequence of state-
ments:

f :- get infile("mumble foo");
lrecl := f.Image.Length;
f.Inimage;
t :- Copy(f.Image);

After the first statement is executed, an Infile connected to
file MUMBLE FOO is created. When the second statement is exe-
cuted, the value of lrecl becomes the record length of file MUM-
BLE FOO. When the third statement is executed, the first record
of MUMBLE FOO is read into f.Image. The last statement assigns a
copy of this text object as the value of t.

Notice that it is not necessary to know the record format of
the input file! Either fixed or variable length records can be
easily read using this procedure.

-7-

The procedure get input file makes it possible to easily
prompt the user for a -ile na5me and then issue a filedef for the
file. The heading of the declaration of get_input_file is:

TEXT PROCEDURE getinput_file(prompt, lrecl);
NAME lrecl; VALUE prompt;
TEXT prompt; INTEGER irecl;

When this procedure is called, the first parameter is a text
object whose value is included in a prompt to the terminal
requesting an input file name. Upon return, the value of Irecl
is the record length of the file whose name was read from the
terminal. When this procedure is executed, the file specifica-
tion is read from the terminal and then a filedef command for
this file is issued (using a unique DD name of the form SIMnnn)
and this text object is the return value of the procedure.

As an example of the use of this procedure, consider the fol-
lowing sequence of statements.

fname :- get_inputfile("program", lrecl);
f :- NEW Infile(fname);
f.Open(Blanks(lrecl);

When the first statement is executed, the message

program input file ?

is printed on the terminal and then input is read from the termi-
nal. This input is interpreted as a CMS file specification and a
filedef for this file is issued. The DD name used in the filedef
is the return value of the procedure and lrecl is set to the
record length of the file. The next two statements create the
Infile object and open the file. For example, if there is a file
named MUMBLE FOO whose record length is 155 in the directory of
the user executing this program, the terminal dialog might look
like this:

program input file ? mumble foo

A filedef for this file would be issued and lrecl would be set to
155. The DD name assigned to the file will be the return value
of get_input file.

The heading of the declaration of get dd_input is:

TEXT PROCEDURE get dd input(filespec, lrecl);
VALUE file spec; NAME irecl;
TEXT filespec; INTEGER lrecl;

The value of the first parameter is a CMS file specification
using the syntax described above. When this procedure is exe-
cuted, a filedef for this file is executed and the DD name

-8-

assigned to the file is the return value of the procedure. In
addition, the value of lrecl is set to the record length of the
file. This procedure is primarily used as a helping procedure
for the other input file management procedures.

Error Checking

All of the procedures described here perform complete error
checking on the file specification. If there is any error in the
file specification, the user is provided with an error message
and is asked to provide a corrected file specification. The
abbreviations described above also apply to these corrective res-
ponses. If any of the three procedures described here returns a
value, the action described above has been performed correctly!
There will not be a SIMULA run time fatal error as a result of
opening input files with these procedures.

When one of these procedures prints an error message concern-
ing the file specification the default response (selected by
entering <cr>) is the string "CMS:". When this response is read
all subsequent input lines are executed as CMS commands and the
CMS response is printed on the terminal. If a command outside
the CMS subset is executed, the core image of the program will be
destroyed; there is no error check for this condition! While in
CMS mode, control is returned to the program by entering the
string RETURN. After this, another prompt for the input file
will be issued and a new response is requested.

This facility is quite useful when a user has forgotten the
name of the input file. The CMS command list can be used to exa-
mine the directory to find the input file that is desired.

All of these procedures assign a special role to the string
"tty:" (in upper, lower or mixed case). This string is the file
specification for the terminal as an input device and is used to
connect Infiles other than Sysin to the terminal.

4. Output File Management

In SIMULA, an output file is created by executing the state-
ment

f NEW Outfile("DDN");

or

f :- NEW Printfile("DDN");

where DDN is a DD name as for Infile. After an Outfile is
created in this way, the file is opened and the length of the

-9-

parameter of open defines the record length of the file to be
written.

As for Infiles, a CMS filedef command must be issued for each
DD name before program execution begins. Three procedures that
simplify the creation of Outfiles and Printfiles are described
in this section and an extension of class Outfile, class out-file
is described in the next section.

The procedures get outfile and getprintfile are the easiest
way to create Outfiles and Printfiles and the procedure
get dd output is primarily used as a helping procedure inside
DIALOG.

REF(Outfile) PROCEDURE getoutfile(file_spec, lrecl);
NAME filespec;
TEXT file-spec;
INTEGER lrecl;

The first parameter of get outfile has as its value a CMS file

specification of the form

<fn>[<ft>(<fm>1

and the second parameter specifies the record length with which
this file is to be written. The return value of get_outfile is
an open Outfile which will write output to the file named in the
first parameter. The string "TTY:", when used as a file specifi-
cation, indicates that output is to be written to the terminal.

When this procedure is executed, the following occurs:

(1) If the <ft> is omitted, it is set to "LOG".

(2) The file specification is checked for syntax
errors and corrections are requested from
the terminal if needed.

(3) A filedef for this file specification with a
DD name of the form SIMxxx and LRECL set to
lrecl is executed. (The RECFM is set to F.)

(4) A new Outfile is created using this DD name.

(5) This Outfile is opened with
Image. Length=lrecl.

(6) The Outfile is the return value of the
procedure.

For example, after the statement

f:- get outfile("MUMBLE", 132);

-10-

is executed the value of f is an Outfile that will write to file
MUMBLE LOG on the A disk. This file will have an LRECL of 132
and RECFM F.

REF(Printfile) PROCEDURE get_printfile(filespec, lrecl);
NAME filespec;
TEXT file spec;
INTEGER irecl;

The first parameter of this procedure is a CMS file specification
as described above and the second parameter is the LRECL of the
file to be written. When this procedure is executed, the follow-
ing occurs:

(1) If the <ft> of the file specification is
omitted, it is set to "LOG".

(2) The file specification is checked for syntax
errors and corrections are requested from
the terminal if needed.

(3) A filedef for this file specification with a
DD name of the form SIMxxx, with LRECL set
to lrecl and RECFM set to "F" is issued. If
there are errors executing the filedef, cor-
rections are requested from the terminal.

(4) The DD name is the return value of the
procedure.

These three procedures provide an adequate set of primitives
for creating output files at run time but the class out-file
described below is much easier to use.

5. Class out file

The system defined class Outfile suffers from a number of
limitations which make it impossible to write some programs and
awkward to write many other programs. Class out-file is designed
to serve a replacement for class Outfile.

When the system defined class Outfile is used, it is impossi-
ble to transmit a line of output to the terminal without a trail-
ing carriage return -- line feed pair. This means that responses
to prompts must always be on the line after the prompt. Using
the Breakoutimage attribute of class out file, this kind of ter-
minal dialog is easy to write.

When the system defined class Outfile is used, two calls to
Outimage must precede a call to Inimage if the terminal tran-
script is to be in the right order. These extra calls to Out-

-11-

.-. -t ,-- -

image are awkward to write and also introduce extra blank lines
into the terminal transcript.

The parameter of class Outfile is a DD name rather than a file
specification. This means that it is necessary to go through
some procedure to convert a file specification into a DD name.
The procedures described in Section 4 make this conversion very
much easier but it is still an awkward way of writing programs.

In an interactive environment, many output errors can be cor-
rected at run time by means of terminal prompts; these correc-
tions are not provided in class Outfile.

Class out file is the same as class Outfile except for the
following changes:

(1) The parameter of class out file is a CMS

file specification of the form

<fn>[<ft>[<fm>]]

or the string "TTY": (in upper, lower or
mixed case). This file specification deter-
mines the destination of output. If <ft> is
omitted, the string "LOG" is provided. The
device name "TTY:" refers to the terminal.
This parameter is also a read only attri-
bute, file_spec, of the class.

(2) Class out file has a niladic procedure
attribute Breakoutimage with the following
property. When this procedure is executed
from an instance of out file whose file_spec
attribute is "TTY:", thi string

Image.Sub(l, Image.Pos)

is written to the terminal without a trail-
ing carriage return -- line feed. If the
file spec attribute is not the string
"TTY.", then the usual call to Outimage is
executed.

(3) When the file_spec attribute of an instance
of out file is "TTY:", only one call to Out-
image Ts required to keep the terminal tran-
script in order. For other file specifica-
tions, the usual call to Outimage is
executed.

(4) In the system defined class Outfile, if a
call to Outtext is executed with insuffi-

-__ a

cient space for the text in Image, an error
termination occurs. In class out file, this
text is written on as many lines as are
needed to print the text. This avoids many
unexpected error terminations.

(5) In the system defined class Outfile, if
there is an attempt to transfer data via a
closed instance of the class, an error ter-
mination results. In class out file, the
user is given an opportunity t; open the
file and, thus, avoid error termination.
Error terminations are, of course, still an
acceptable action but the user makes the
decision at run time.

(6) Procedure attributes for writing ASCII text
to keyboard and bit paired ASCII/APL termi-
nals are provided (See Section 6).

The text of a program that uses class out file should be
structured as follows:

BEGIN
EXTERNAL CLASS dialog;
dialog BEGIN

INSPECT tty DO
BEGIN

<main block of program>
END of tty block;
restore terminal

END of dialiig block;
END of program.

When this is done, an instance of out file (the value of tty) is
the default output device instead of Sysout. The appropriate
initializations are performed in dialog.

6. APL Compatability

In some applications, a program will be reading from and writ-
ing to a key or bit paired ASCII/APL terminal and perform its own
character set translation. These programs might well be using
class DIALOG or find other reasons to write ASCII text to an out-
put device. If this is done without translation, the messages
are unintelligible. The procedures Outimage and Breakoutimage in
class out file provide for character translation in accord with
the terminal type. (For normal ASCII output the overhead associ-
ated with this translation is negligible (one comparison) and
later versions of out file will be far more efficient than the
system defined version.]

-13-

._ . .. -;:-.

Users who are not working with ASCII/APL terminals need not
read this section -- all defaults in DIALOG assume an ASCII ter-
minal.

Class out file has six procedure attributes related to APL
character sets. Four of these procedures are used to control the
output character set and two are used to perform output opera-
tions.

The procedure termtype returns an integer that is related to
the output character set as follows:

Character Set term type

ASCII 0
keypaired APL 1
bit paired APL 2

These integer values were chosen to match the values of the sys-
tem variable quad-TT in APL implementations.

The STAPL convention for ASCII/APL terminals specifes that the
character SO (ASCII 14, control-N) causes a terminal to switch to
the Ar, character set and that the character SI (ASCII 15, con-
trol-0) causes a terminal to switch to the ASCII character set.
These conventions are followed in class out-file.

When the procedure set ascii is executed, the value of
term_type becomes 0 and no output character translation is per-
formed after the procedure is executed. In addition, a line con-
taining the character SO is written to the output device. This
causes the execution of Outimage to empty Image before the char-
acter is written; the previous translation is in effect for this
line.

When the procedure set key paired is executed the value of
term type becomes 1 and a ter this call all output via
APL Futimage and APL breakoutimage is translated for key_paired
ASCYI/APL terminals ag described below. In addition, a line con-
taining the character SI is written to the output device. This
causes the execution of Outimage to empty Image before the char-
acter is written; the previous translation is in effect for this
line.

The procedure set-bit paired is the same as setkey_paired
except that term type is set to 2 and translation is performed
for bit_paired ASCII/APL terminals.

ASCII text is translatd into APL subject to the following con-
vention. Lower case ASCII letters are translated into APL let-
ters and upper case ASCII letters are translated into underlined
APL letters. The ASCII graphics are translated into the corres-
ponding APL graphic. The following ASCII graphics are translated

-14-. j~~~~

into different APL characters because there is no exact

equivalent in the APL character set.

ASCII Graphic Translated Graphic

right tack
diamond

& and sign
@ alpha

cent sign
high minus

In a very limited number of applications it may be essential
to bypass automatic character translation. For example, a pro-
gram that directly writes to a terminal or file in the APL char-
acter set might wish to bypass translation. The procedure
apl outimage and apl breakoutimage are just like Outimage and
Breikoutimage except that no translation is performed independent
of the terminal type.

7. Utility Procedures

A number of procedures that make it easier to write interac-
tive applications are described in this section. Some of the
procedures were written specifically for the IBM SIMULA environ-
ment; some are adaptations of procedures that are in the DEC-10
SIMULA library and others are taken directly frm the DEC-10
SIMULA manual.

The utility procedures are described by exhibiting the heading
of their declaration and following this with a brief description
of the procedure.

TEXT PROCEDURE frontstrip(t); TEXT t;

This procedure returns a subtext of t that has all leading blanks
removed. The value of the expression

frontstr ip(x. strip)

is the text x with both leading and trailing blanks removed.

TEXT PROCEDURE upcase(t); TEXT t;

The return value of this procedure is a new text object that is
the same as its actual parameter except that all lower case let-
ters are changed to the corresponding upper case letters. It
does not map lower case national letters in the ISO standard into
upper case national letters.

TEXT PROCEDURE rest(t); TEXT t;

-15-

_ _ - - - -- - - , - -

The return value of this procedure is a subtext of t that begins

at t.Pos and ends at t.Length.

BOOLEAN PROCEDURE is integer(t); NAME t; TEXT t;

This procedure returns the value TRUE if the text object t is an
integer and the value FALSE otherwise. A text object is an
integer if the first character is '+', "-' or a digit and if the
remaining characters in t are digits.

TEXT PROCEDURE conc2(tl, t2); VALUE tl, t2;
TEXT tl, t2;

The return value of this procedure is a new text object that is
the concatenation of its two text parameters in the order first
parameter, second parameter.

PROCEDURE next file(f); REF(Infile) f;

This procedure closes file f and then opens it again with the
same record length as it had before the close. This procedure is
useful when writing programs that accept an empty line as select-
ing the default answer. In CMS, this empty line is treated as an
end-of-file and an attempt to read another record results in an
error termination. By executing next file after the read, the
error termination can be bypassed. HeFe is an example of code to
do this:

IF Sysin.Image.sub(l,2) =
THEN nextfile(sysin);

PROCEDURE tty_inimage(f); REF(Infile) f;y

This procedure is the same as the system defined Inimage
attribute of Infiles with one exception. When an end-of-file is
encountered two actions are taken:

(1) The value of f.Image is set to
Blanks(f.Image.Length).

(2) File f is closed and then opened again with
the same record length.

This procedure is designed for constructing interactive programs
in such a way that an empty line entered from a terminal can be
treated as an empty line rather than as an end-of-file (the CMS
convention).

PROCEDURE cmssubset;

When the procedure cms subset is executed, the following hap-
pens:

-16-

(1) The terminal prompt character is sharp (#.

(2) Each input line typed by the user is trans-
mitted to CMS for execution. After the com-
mand is executed, CMS output is typed on the
terminal and the usual ready message is
printed.

(3) When the input line return is encountered,
control is returned to the calling program.

TEXT PROCEDURE insert tabs(t);
VALUE t;
TEXT t;

The return value of this procedure is a copy of the text
object t.Strip with blanks replaced by tabs (ASCII 9, EBCDIC 5)
under the assumption that tabs are set every eight spaces as per
the ANSI standard. Many text objects will require substantially
less space after processing by insert tabs. The SIMULA compiler
and the spooling utilities described Tn the CMS Software Notebook
(TM 79-6) will correctly process files with imbedded tabs.

TEXT PROCEDURE expand tabs(t);
VALUE t;
TEXT t;

The return value of this procedure is a copy of the text
object t with tabs (ASCII 9, EBCDIC 5) replaced by the appropri-
ate number of spaces under the assumption that tabs are set every
eight spaces as per the ANSI standard.

8. Directions

All of the procedures described above are included in a class
DIALOG. The design of this class was motivated by the implemen-
tation of a class SAFEIO by Mats Ohlin of the Swedish Research
Institute of National Defense in DEC-10 SIMULA. The present
design was tailored to meet the needs of IBM SIMULA users and,
therefore, differs in many details from SAFEIO.

To incorporate these procedures in a program, the program
structure should be as follows:

-17-

- ------- - - - - - - ---- - - -

BEGIN
EXTERNAL CLASS dialog:
dialog BEGIN

INSPECT tty DO
BEGIN

<text of program using dialog>
END of tty block;
restore terminal

END of dialog block;
END of program.

If this program is contained in a file named TEXT SIMULA, it is

compiled with the CMS command

SIMULA TEXT (CLASS DIALOG <other options>

Before.compiling a program that uses DIALOG, you should either
copy the SIMCLASS file onto your disk or link to the Computer
Science library disk. To copy the SIMCLASS file onto your disk,
execute the following commands:

LINK CSDULLES 191 333 READ ALL
ACCESS 333 G
COPY DIALOG SIMCLASS G DIALOG SIMCLASS A
DETACH 333

If you prefer to use the library copy of these files, simply
execute the commands:

LINK csdulles 191 333 read all
ACCESS 333 G/A

Using the library copy has the advantage that you will be using
the most current copy of DIALOG.

9. Terminal Attributes

The input/output procedures make certain assumptions about
properties of the CMS environment in which the program that uses
these procedures is executed. As part of the initialization of
DIALOG, attributes of the environment are set and it is possible
to restore the environment when a program completes execution.

It is assumed that the user of an interactive program does not
want to receive messages while the program is in execution and,
therefore, WNG, MSG and ACNT are set OFF during DIALOG initiali-
zation. These attributds are turned on again when the procedure
restore terminal is executed.

It is assumed that interactive programs will generate their
own prompts either by using the query procedures (Section 2) or

-18-

directly using Breakoutimage and, therefore, terminal prompting
is turned off during DIALOG initialization and the prompt charac-
ter is restored to period (.) when restore-terminal is executed.

It is assumed that terminals are constructed so that the first
character on line i+l immediately follows the last character on
line i. This means that it is possible to write several lines of
output with a single write. In order to take advantage of this
property, the terminal line length is set to the CMS limit of 255
characters; this is als tty.Image.Length.

It is assumed that interactive programs will read upper and
lower case letters as different characters and, therefore, the
appropriate FILEDEF for SYSIN is executed.

Since many of the usual LINEND characters are used in some
application, LINEND is turned off during program execution and
set to escape or altmode (ASCII 27, EBCDIC 39) when
restore-terminal is executed.

The initializations performed by DIALOG are such that modules
created from SIMULA programs can be executed directly without any
supporting JCL.

In summary, during DIALOG intialization, and whenever the
procedure initializeterminal is executed, the following occurs:

(1) CP TERM PROMPT OFF
(2) CP TERM LINEND OFF
(3) CP TERM LINES 255
(4) CP SET WNG OFF
(5) CP SET ACNT OFF
(6) CP SET MSG OFF
(7) Sysin is opened as an upper and lower case

file.
(8) tty is opened as an instance of out-file

with a record length of 255.

When the procedure restore terminal is executed, the following
occurs:

(1) CP TERM PROMPT
(2) CP TERM LINEND <esc>
(3) CP SET WNG ON
(4) CP SET MSG ON
(5) CP SET ACNT ON

-19-

APPENDIX

EXAMPLE OF USE OF DIALOG

This appendix contains a fragment of a program that edits the
text of SIMULA programs. This program can completely reformat
the text of an input file and change all of the properties of the
text that influence its appearance. In addition, it is capable
of inserting tab characters to reduce the disk space required to
store the text.

The program interacts with the user by asking a long sequence
of questions that define the behavior of the program. Each of
these questions has a default answer and it is possible to select
the defalt answer by terminating the first response with the
character escape or altmode.

The following paragraphs describe the statements in the pro-
gram. The reader is encouraged to examine the program text that
follows the explanation as the text provides a clear example of
the use of DIALOG procedures. A sample terminal transcript fol-
lows the program text.

The variable fastflag is set to TRUE if the user indicates
that he wishes to select the default answers to :!Il questions.
At the beginning of the dialog, this variable is set to FALSE.

The first question asks the user to provide the name of the
file that contains the program. This is done with a call to
textrequest. Since there is no default file name, the second
parameter of text_request is NOTEXT. There is a help procedure
for this query called helpl elsewhere in the program.

The specifications of this program state that if the input
file name is terminated with the character escape or altmode then
the default answer to all of the remaining questions are
selected. After the file name is read, leading blanks are
removed with a call to the procedure frontstrip. Next the last
character of the user's response is examined to find out if it is
escape (ASCII 27, EBCDIC 39).

If this character is present, fastflag is set to TRUE and an
instance of Outfile for the output is created. The specifica-
tions indicate that the default file specification of the output
file has the same file name as the.input file and file type SIMED
and that the record length of this file is to be 80. In the next
statements, the escape character is removed from the file speci-
fication and then the variable outf is set to the appropriate
instance of Outfile using the procedure get outfile.

-20-

The specifications for this program also state that if the
file type of the input file specification is omitted, then the
file type of the input file will be set to SIMULA. The complete
file name is composed in the next statement using the procedure
conc2 to compose the complete file specification and get infile
is used to set the variable prog to the instance of Infile that
will read the input file.

At this point, the input file has been initialized and if
fastflag is true, the output file has also been initialized. If
fastflag is FALSE, it is necessary to read the name of the output
file from the terminal. The specifications of this program also
state that if the name of the output file is terminated by the
character escape then the default answers to the remaining ques-
tions will be assumed. This processing as well as assigning the
variable outf the appropriate value is done in the IF statement
that begins IF NOT fastflag.

These are the only two questions that permit the use of the
escape character to select the default answers to the remaining
questions. Therefore, the next statement sets these default
values if fastflag is true and then skips the remaining ques-
tions.

The next question asks the user to specify the number of char-
acters in each indentation step. A negative answer means that
leading blanks in the program text will be retained and, there-
fore, the allowable range of this answer is from a negative num-
ber to a positive number.

The next question asks the user to provide the rightmost posi-
tion on a line where an indented line of text may begin. The
smallest possible value is indent and the largest possible value
is outleng th.

A user is permitted to ask to have tabs used when writing the
output file. The next question, using booleanrequest, asks for
directions. Since the SIMULA compiler accepts input files that
contain tabs and output files are intended for processing by this
compiler, the default answer is "yes".

The remaining questions ask the user to select conversion
modes for different syntactical objects in a SIMULA program. A
correspondence between integers and the conversion modes is
printed on the terminal. After these modes are described, the
user is asked to specify a conversion mode for reserved words,
standard identifiers, user identifiers, comments and options and,
lastly, for text constants. The appropriate program variables
are set to the response to these questions.

The label fast appears at the end of these questions. The
remainder of the program text consists of the code to perform the
conversion.

-21-

The program text follows.

fastflag FALSE;
progname text-request("Enter program file name:",

NOTEXT,
helpl);

progname :-frontstrip(progname);
IF progname.Sub(progname.Length,l).Getchar = Char(39)

THEN BEGIN
fastflag TRUE;
progname :-progname.Sub(l,progname.Length-1);

progname :-progname.Strip;
outf :-get-outfile(conc2(first-token(progname),

"SIMED") , 80);
END;

prog :- IF no blanks (progname)
THEN get infile(conc2(progname, "1 SIMULA"1))
ELSE get infile(progname);

IF NOT fastflag
THEN BEGIN

outname :-text-request("Enter output file name:",
conc2(first token (progname)

"SIMED"),
help2);

outname~: frontstrip(outname);
IF outname.Sub(outname.Length,l) .Getchar

- Char(39)
THEN BEGIN

fastflag :=TRUE;
outname

outname .Sub (1,
outname.Length-l) .Strip

END;
outf :-get-outfile(outname, 80);

END;
IF fastflag

THEN BEGIN
outlength := 72;
indent := 0;
leftskip :=FALSE;
maxindent 52;
tabs :- FALSE;
convert(2) :- 1;1
convert(3) :3;
convert(4) :2;
convert(S) :=0;
convert(6) :0;
GO TO fast

END;
indent :- integer -request("Enter indentation step:",

0, (-outlength//2), outlength//2,help4);

-22-

leftskip:= indent > 0; indent:= Abs(indent);

maxindent := integer request("Enter max. indentation position:",
52, indent, outlength,help5);

IF maxindent < 1 THEN maxindent:= 1;
tabs := boolean request("Tabs in indentation?:",

TRUE, help6);

Outtext("Conversion modes:"); Outimage;
Outtext("No change 0") ; Outimage;
Outtext("Change to upper case 1"); Outimage;
Outtext("Change to lower case 2"); Outimage;
Outtext("Change to edit case 3");
Outimage; Outimage;
Outtext("Enter conversion modes for:"); Outimage;
convert(2) := integer_request("Reserved words:",

1,0,3,TRUE);
convert(3) : integer_request("Standard identifiers:",

3,0,3,TRUE);
convert(4) := integer_request("User identifiers:",

2,0,3,TRUE);
convert(5) integer_request("Comnent and options:",

0,0,2,TRUE);
convert(6) := integer_request("Text constants:",

0,0,2,TRUE);
fast:

A terminal transcript of the execution of this program fol-
lows. The first line is a CMS command to load and execute the
program SIMED. The message "EXECUTION BEGINS..." is emitted by
CMS when the loader finishes its work.

The next line of output introduces the program. Instructions
to print this message precede the text considered above.

After this, the prompt for the program file name appears and
the user answered "dialog2". Since the name was not followed by
escape, the next question concerned the output file name. The
default name "dialog2 SIMED" is provided. The user selected this
answer by entering "return".

Next, the indentation step was requested. The user found the
default value unacceptable and provided 4 as his response. A
value other than the default value was also selected for the
question concerning the maximum indentation position.

The user accepted the default of tabs in the output file and
then the program printed the conversion modes.

The user's responses to the questions concerning conversion
modes appear in the transcript.

-23-

After all the questions were answered, the program text was
converted and the program printed a message summarizing its work.
The next line is the CMS ready message and the period on the next
line indicates that CMS is expecting another command.

The help procedures were not exhibited in this example because
the text is of little interest here. The code of these help
procedures is very similar to the example given in Section 2.

.go simed

EXECUTION BEGINS...

SIMED - SIMULA EDITOR AND INDENTATION PROGRAM. IBM VERSION 1.0.

Enter program file name: dialog2
Enter output file name:/dialog2 SIMED/:
Enter indentation step:/0/: 4
Enter max. indentation position:/52/: 48
Tabs in indentation?:/y/:
Conversion modes:
No change 0
Change to upper case 1
Change to lower case 2
Change to edit case 3

Enter conversion modes for:
Reserved words:/I/: 1
Standard identifiers:/3/: 1
User identifiers:/2/: 1
Comment and options:/O/:
Text constants:/O/:
(SIMED - Number of BEGIN's (END's) found: 43]
R;

-24-

AhA

DAT

FILMEI

ITI

